Clica em seguinte para veres o primeiro exercício ou em: todas as páginas, no Índice do artigo


 

 

Reta de nível perpendicular a um reta oblíqua

 

Faz passar uma reta oblíqua qualquer pelo ponto P (3;2;5) que seja perpendicular a uma reta de nível n que corta o plano frontal na abcissa 0 e com 3 de cota. A reta n faz com o plano frontal 60º a.e.

 Solução

 


 

Retas oblíquas perpendiculares

Pelo ponto P (0;4;3) faz passar uma reta oblíqua s que seja perpendicular  a outra reta oblíqua m que contém os seguintes pontos: A(-9;5;6) e B(-3;2;4).

 Solução 


 

Reta oblíqua perpendicular ao contorno aparente de uma cone.

 

Desenha um cone irregular assente no PHP. O centro da sua base é o ponto O(0;5;0).

A circunferência tem 3 de raio.

A altura do cone é 5 e V tem 7 de abcissa e 1 de afastamento.

Faz passar uma reta oblíqua , perpendicular  ao centro do contorno aparente do cone com maior cota.

 

Solução 

 


 

Reta perfil perpendicular a uma oblíqua

 

 

A reta de perfil p , de abcissa 0, é paralela ao beta 2/4 e corta o plano frontal a 4 de cota. Faz passar pelo ponto P(-4;3;6) , externo à reta de perfil, uma reta oblíqua perpendicular à reata dada.

 

Solução 


 

 Reta perpendicular a um plano projetante

 

Faz passar uma reta r perpendicular a um plano de topo que faz 40º a.d.

 

Solução 

 


 

 Reta perpendicular a um plano oblíquo

 

Traça uma reta r perpendicular a um plano oblíquo, o traço frontal do plano beta faz 45º a.d e o traço horizontal faz 45º a.e. A reta passa pelo ponto P (1;2;6) A abcissa zero corresponde à interseção dos traços do plano com x.

 

Solução 

 


 

Reta perpendicular a um plano de rampa

 

Traça uma reta r que faça 90º com o plano de rampa w (ômega). w contém o ponto I(3;4;3) de Interseção da reta com o plano e faz 55º com o PFP.

 

Solução

 


 

Plano vertical perpendicular a um oblíquo

 

Traça um plano a (alfa),  que seja perpendicular ao plano vertical b (beta). b faz 35º a.d.

A reta i de interseção dos dois planos é oblíqua, o traço horizontal tem 4 de afastamento e o traço frontal 5 de cota.

 

Solução

 


Planos oblíquos  perpendiculares

 

O plano oblíquo p (pi) é definido por duas retas concorrentes n e f. P(0;3;6) é o ponto de concorrência de n e f. n é de nível e faz 35º a.e.  E f é frontal e faz 40º a.d.

Faz passar pela reta de nível um plano oblíquo w (ômega) que seja perpendicular com o plano formado pelas duas retas.  

 

Solução

 


 

 

 Planos de rampa perpendiculares

 

O plano de rampa w (ômega) é definido pela reta fronto-horizontal com 4 de afastamento e 5 de cota e pelo ponto A (3;1;8) Faz passar pela reta fronto-horizontal um novo plano de rampa p (pi) perpendicular ao plano w.

 

Soução 

 


 

 Plano Oblíquo perpendicular a um plano de rampa a passa por um ponto

 

O plano de rampa a (alfa), cujo o traço frontal corta o PFP a 5 de cota, contém o ponto P(3;5;3). Faz passar pelo ponto P um plano oblíquo perpendicular ao plano de rampa.

 

Solução

 


 

Plano oblíquo perpendicular a uma plano de rampa que passa por uma reta

 

O plano de rampa p (pi) contém a reta oblíqua r. r2 faz 30º a.e. e r1 faz 40º a.d. O traço frontal de r está 5 à esquerda do traço horizontal. Faz passar por r um plano oblíquo w (ômega) que seja perpendicular ao  plano de rampa p.

 

Soução